网站建设说课获奖视频,网络营销课程作业,监理网站,网店运营心得体会欢迎关注更多精彩 关注我#xff0c;学习常用算法与数据结构#xff0c;一题多解#xff0c;降维打击。
本期话题#xff1a;半平面求交
背景知识
学习资料
视频讲解 https://www.bilibili.com/video/BV1jL411C7Ct/?spm_id_from333.1007.top_right_bar_window_history…欢迎关注更多精彩 关注我学习常用算法与数据结构一题多解降维打击。
本期话题半平面求交
背景知识
学习资料
视频讲解 https://www.bilibili.com/video/BV1jL411C7Ct/?spm_id_from333.1007.top_right_bar_window_history.content.clickvd_sourcefb27f95f25902a2cc94d4d8e49f5f777
文本资料 https://oi-wiki.org//geometry/half-plane/
基本问题转化
在很多题目中给定的线段是没有方向的。此时我们需要先把所有的线段都转化成点加向量的方式。使得向量的左边为有效区域。这样就可以使用模板求解了。
要注意的问题
主要的问题是浮点型的判断大小问题。在排序和判断点与线的关系时都用到浮点型判断。有些题型会卡精度能用整数判断尽量不要使用浮点判断。atan2计算比较耗时可以事先保存。
代码模板
求多边形的核
题目链接https://vjudge.net/problem/UVA-1571
多边形的核就是取核区域内任意一点站在该可以观察到多边形内任意一点。
利用半平面求交可以得到多边形的核
#includestdio.h
#includecmath
#include algorithm
#include vector
#include list
#include cstring
#include setusing namespace std;
const double EPS 1e-14;const int N 2e6 10;int cmp(double d) {if (abs(d) EPS)return 0;if (d 0)return 1;return -1;
}class Point {
public:double x, y;int id;Point() {}Point(double a, double b) :x(a), y(b) {}Point(const Point p) :x(p.x), y(p.y), id(p.id) {}void in() {scanf(%lf %lf, x, y);}void out() {printf(%.16f %.16f\n, x, y);}double dis() {return sqrt(x * x y * y);}double dis2() {return x * x y * y;}Point operator -() const {return Point(-x, -y);}Point operator -(const Point p) const {return Point(x - p.x, y - p.y);}Point operator (const Point p) const {return Point(x p.x, y p.y);}Point operator *(double d)const {return Point(x * d, y * d);}Point operator /(double d)const {return Point(x / d, y / d);}void operator -(Point p) {x - p.x;y - p.y;}void operator (Point p) {x p.x;y p.y;}void operator *(double d) {x * d;y * d;}void operator /(double d) {this -operator* (1 / d);}bool operator(const Point a) const {return x a.x || (abs(x - a.x) EPS y a.y);}bool operator(const Point a) const {return abs(x - a.x) EPS abs(y - a.y) EPS;}
};// 向量操作double cross(const Point a, const Point b) {return a.x * b.y - a.y * b.x;
}double dot(const Point a, const Point b) {return a.x * b.x a.y * b.y;
}class Line {
public:Point front, tail;double ang;int u, v;Line() {}Line(const Point a, const Point b) :front(a), tail(b) {ang atan2(front.y - tail.y, front.x - tail.x);}
};int cmp(const Line a, const Line b) {//if (a.u b.u a.v b.v)return 0;return cmp(a.ang - b.ang);}// 点在直线哪一边0 左边0边
double SideJudge(const Line a, const Point b) {//return cmp(cross(a.front - a.tail, b - a.tail));return cross(a.front - a.tail, b - a.tail);
}int LineSort(const Line a, const Line b) {int c cmp(a, b);if (c)return c 0;return cross(b.front - b.tail, a.front - b.tail) 0;
}/*
点p 到 pr 表示线段1
点q 到 qs 表示线段2
线段1 上1点用 p pt*r (0t1)
线段2 上1点用 q qu*s (0u1)
让两式相等求交点 pt*r qu*s
两边都叉乘s
(pt*r)Xs (qu*s)Xs
pXs t*rXs qXs
t (q-p)Xs/(rXs)
同理
u (p-q)Xr/(sXr) - u (q-p)Xr/(rXs)以下分4种情况
1. 共线sXr0 (q-p)Xr0, 计算 (q-p)在r上的投影在r长度上的占比t0
计算(qs-p)在r上的投影在r长度上的占比t1查看[t0, t1]是否与范围[01]有交集。
如果t0t1, 则比较[t1, t0]是否与范围[01]有交集。
t0 (q-p)*r/(r*r)
t1 (qs-p)*r/(r*r) t0 s · r / (r · r)
2. 平行sXr0 (q-p)Xr!0
3. 0u1 0t1 有交点
4. 其他u, t不在0到范围内没有交点。
*/
pairdouble, double intersection(const Point q, const Point s, const Point p, const Point r, bool oneline) {// 计算 (q-p)Xrauto qpr cross(q - p, r);auto qps cross(q - p, s);auto rXs cross(r, s);if (cmp(rXs) 0) {oneline true;return { -1, -1 }; // 平行或共线}// 求解t, u// t (q-p)Xs/(rXs)auto t qps / rXs;// u (q-p)Xr/(rXs)auto u qpr / rXs;return { u, t };
}Point LineCross(const Line a, const Line b, bool f) {Point dira a.front - a.tail;Point dirb b.front - b.tail;bool onelinefalse;auto p intersection(a.tail, dira, b.tail, dirb, oneline);if (oneline)f false;return a.tail dira * p.first;
}class HalfPlane {
public:vectorLine lines;vectorint q;vectorPoint t;int len;HalfPlane() {lines.resize(N);q.resize(N);t.resize(N);}void reset() {len 0;}void addLine(const Line a) {lines[len] a;}bool run() {sort(lines.begin(), lines.begin() len, LineSort);int l -1, r 0;q[0] 0;for (int i 1; i len; i) {if (cmp(lines[i], lines[i - 1]) 0)continue;while (r - l 1 SideJudge(lines[i], t[r]) 0)r--;while (r - l 1 SideJudge(lines[i], t[l 2]) 0)l;q[r] i;bool ftrue;t[r] LineCross(lines[q[r]], lines[q[r - 1]], f);}while (r - l 1 SideJudge(lines[q[l 1]], t[r]) 0)r--;//if (r - l 1) {// bool f true;// t[r 1] LineCross(lines[q[l 1]], lines[q[r]], f);// r;// if (!f)r - 2;//} 统计交点//l;//vectorPoint ans(r - l);//for (int i 0; i ans.size(); i) {// ans[i] t[i l 1];//}return r-l2;}
};Point oiPs[N * 2];
pairint, int ori[N * 2];
HalfPlane hp;int bigDevid(int a, int b) {for (int i max(abs(a), abs(b)); i 1; i--) {if (a % i 0 b % i 0)return i;}return 1;
}void solve() {int n, m 1;//FILE* fp fopen(ans.txt, w);while (scanf(%d, n) ! EOF n) {int a, b;for (int i 0; i n; i) {scanf(%d %d, a, b);oiPs[i] Point(a, b);ori[i] { a,b };}oiPs[n] oiPs[0];ori[n] ori[0];hp.reset();for (int i 0; i n; i) {hp.addLine(Line(oiPs[i1], oiPs[i]));hp.lines[i].u ori[i1].first - ori[i].first;hp.lines[i].v ori[i1].second - ori[i].second;int bd bigDevid(hp.lines[i].u, hp.lines[i].v);hp.lines[i].u / bd;hp.lines[i].v / bd;}auto ps hp.run();if (ps)puts(1);else puts(0);m;}
}int main() {solve();return 0;}/*
4
0 0
0 1
1 1
1 0
8
0 0
3 0
4 3
2 2
3 4
4 4
4 5
0 5
08
0 0
0 1
1 1
1 2
0 2
0 3
3 3
3 0
*/练习一
链接https://www.luogu.com.cn/problem/P4196
求多个凸多边形的交面积。
对每条边进行半平面求交再利用三角形求多边形面积。 #includestdio.h
#includecmath
#include algorithm
#include vector
#include list
#include cstring
#include setusing namespace std;
const double EPS 1e-14;const int N 2e6 10;int cmp(double d) {if (abs(d) EPS)return 0;if (d 0)return 1;return -1;
}class Point {
public:double x, y;int id;Point() {}Point(double a, double b) :x(a), y(b) {}Point(const Point p) :x(p.x), y(p.y), id(p.id) {}void in() {scanf(%lf %lf, x, y);}void out() {printf(%.16f %.16f\n, x, y);}double dis() {return sqrt(x * x y * y);}double dis2() {return x * x y * y;}Point operator -() const {return Point(-x, -y);}Point operator -(const Point p) const {return Point(x - p.x, y - p.y);}Point operator (const Point p) const {return Point(x p.x, y p.y);}Point operator *(double d)const {return Point(x * d, y * d);}Point operator /(double d)const {return Point(x / d, y / d);}void operator -(Point p) {x - p.x;y - p.y;}void operator (Point p) {x p.x;y p.y;}void operator *(double d) {x * d;y * d;}void operator /(double d) {this -operator* (1 / d);}bool operator(const Point a) const {return x a.x || (abs(x - a.x) EPS y a.y);}bool operator(const Point a) const {return abs(x - a.x) EPS abs(y - a.y) EPS;}
};// 向量操作double cross(const Point a, const Point b) {return a.x * b.y - a.y * b.x;
}double dot(const Point a, const Point b) {return a.x * b.x a.y * b.y;
}class Line {
public:Point front, tail;double ang;int u, v;Line() {}Line(const Point a, const Point b) :front(a), tail(b) {ang atan2(front.y - tail.y, front.x - tail.x);}
};int cmp(const Line a, const Line b) {//if (a.u b.u a.v b.v)return 0;return cmp(a.ang - b.ang);}// 点在直线哪一边0 左边0边
double SideJudge(const Line a, const Point b) {//return cmp(cross(a.front - a.tail, b - a.tail));return cross(a.front - a.tail, b - a.tail);
}int LineSort(const Line a, const Line b) {int c cmp(a, b);if (c)return c 0;return cross(b.front - b.tail, a.front - b.tail) 0;
}/*
点p 到 pr 表示线段1
点q 到 qs 表示线段2
线段1 上1点用 p pt*r (0t1)
线段2 上1点用 q qu*s (0u1)
让两式相等求交点 pt*r qu*s
两边都叉乘s
(pt*r)Xs (qu*s)Xs
pXs t*rXs qXs
t (q-p)Xs/(rXs)
同理
u (p-q)Xr/(sXr) - u (q-p)Xr/(rXs)以下分4种情况
1. 共线sXr0 (q-p)Xr0, 计算 (q-p)在r上的投影在r长度上的占比t0
计算(qs-p)在r上的投影在r长度上的占比t1查看[t0, t1]是否与范围[01]有交集。
如果t0t1, 则比较[t1, t0]是否与范围[01]有交集。
t0 (q-p)*r/(r*r)
t1 (qs-p)*r/(r*r) t0 s · r / (r · r)
2. 平行sXr0 (q-p)Xr!0
3. 0u1 0t1 有交点
4. 其他u, t不在0到范围内没有交点。
*/
pairdouble, double intersection(const Point q, const Point s, const Point p, const Point r, bool oneline) {// 计算 (q-p)Xrauto qpr cross(q - p, r);auto qps cross(q - p, s);auto rXs cross(r, s);if (cmp(rXs) 0) {oneline true;return { -1, -1 }; // 平行或共线}// 求解t, u// t (q-p)Xs/(rXs)auto t qps / rXs;// u (q-p)Xr/(rXs)auto u qpr / rXs;return { u, t };
}Point LineCross(const Line a, const Line b, bool f) {Point dira a.front - a.tail;Point dirb b.front - b.tail;bool onelinefalse;auto p intersection(a.tail, dira, b.tail, dirb, oneline);if (oneline)f false;return a.tail dira * p.first;
}class HalfPlane {
public:vectorLine lines;void addLine(const Line a) {lines.push_back(a);}vectorPoint run() {sort(lines.begin(), lines.end(), LineSort);vectorint q(lines.size() 10);vectorPoint t(lines.size() 10);int l -1, r 0;q[0] 0;for (int i 1; i lines.size(); i) {if (cmp(lines[i], lines[i - 1]) 0)continue;while (r - l 1 SideJudge(lines[i], t[r]) 0)r--;while (r - l 1 SideJudge(lines[i], t[l 2]) 0)l;q[r] i;bool f true;t[r] LineCross(lines[q[r]], lines[q[r - 1]], f);}while (r - l 1 SideJudge(lines[q[l 1]], t[r]) 0)r--;if (r - l 1) {bool f true;t[r 1] LineCross(lines[q[l 1]], lines[q[r]], f);r;}// 统计交点l;vectorPoint ans(r - l);for (int i 0; i ans.size(); i) {ans[i] t[i l 1];}return ans;}
};Point oiPs[N];void solve() {int n, m;scanf(%d, n);HalfPlane hp;int a, b;while (n--) {scanf(%d, m);for (int i 0; i m; i) {scanf(%d%d, a, b);oiPs[i].x a;oiPs[i].y b;}oiPs[m] oiPs[0];for (int i 0; i m; i) {hp.addLine(Line(oiPs[i 1], oiPs[i]));}}auto keyPoints hp.run();double ans 0;for (int i 2; i keyPoints.size(); i) {ans cross(keyPoints[i - 1] - keyPoints[0], keyPoints[i] - keyPoints[0]);}printf(%.3f\n, ans / 2);
}int main() {solve();return 0;}/*
3
3
-1 2
-2 1
-1 13
1 1
2 1
1 23
1 1
3 0
2 2*/本人码农希望通过自己的分享让大家更容易学懂计算机知识。创作不易帮忙点击公众号的链接。